地質調査

報告書

令和元年9月

株式会社

ま	えて	が き1
§1 言	調 周査 [」]	周査概要1 也案内図2
§ 2	訮	周查方法
2	-1	機械ボーリング3
2	-2	標準貫入試験
2	-3	孔内水平載荷試驗5
2	-4	試料採取6
2	-5	室内土質試験
§ 3	訮	周査結果
3	-1	調査地周辺の地形・地質8
3	-2	調査ボーリング結果10
3	-3	孔内水平載荷試驗結果13
3	-4	室内土質試験結果14
§ 4	老	专察
4	-1	設計用土質定数の提案 19
4	-2	液状化の検討

<巻 末 資 料> 調査地点位置図 ボーリング柱状図 孔内水平載荷試験結果 室内土質試験結果 液状化検討結果 記 録 写 真 まえがき

御依頼により、建物建設地の地盤状況の確認を目的として、本調査を実施しここにまとめる。

- §1 調査概要
- 1.1 調査件名

地質調査

1.2 調査場所

東京都台東区東浅草 調査地点は巻末資料「調査地点位置図」参照

1.3 調査数量

機械ボーリング孔(φ66mm)	1 孔 L=38m
標準貫入試験	38 回
孔内水平載荷試験	1か所
乱れの少ない試料採取	1か所
室内土質試験	式

1.4 調査期間

令和元年8月1日 ~ 令和元年8月3日

1.5 調查担当

§2 調査方法

2-1 機械ボーリング

機械ボーリングは、地層中の原位置において貫入試験を実施して、その深度の強度 特性を知ること、及びその原位置の地層の土試料を採取することを目的として実施す る。ボーリング時には、同時に地層の判別、地下水位の深度等も合わせて調査する。 ボーリングには様々な方法及び機械の種類があるが、本調査においては、ロータリ ー式ボーリング機械を使用した。

ボーリング装置の概略は図 2-1.1に示すとおりである。削孔(掘進)は、ロッド の先端に取り付けられたドリリングビット(コアチューブの先端に付けられているメ タルクラウン)の回転と給圧により、地層または岩盤を切り削り粉砕しながら行う。 削りくず(スライム)は泥水又は清水の循環によって孔外に排出する。泥水は、普通 ベントナイト(粘土鉱物の一種)を清水に混入して作製する。ベントナイトの混入 は、削りくずの地上への排出力を向上させるだけでなく、孔壁の崩壊を抑制する効果 ももたらす。ただし、原則として地下水位より上方では、循環液体(泥水・清水)を 使用せず、空掘り(無水掘り)を実施する。

図 2-1.1 ボーリング装置概略図

2-2 標準貫入試験

標準貫入試験は、貫入試験の一種であり、もっとも一般的に使用される貫入試験で ある。貫入試験とは、地層中に抵抗体を貫入させ、地層の抵抗の度合いを測ることに より、地層の工学的性状を知るための試験である。貫入試験には、大きく分けて、静 的貫入試験と、動的貫入試験とがある。静的貫入試験は、一定圧力・一定速度により 抵抗体を連続的に貫入させて地層の抵抗値を測定するものである。動的貫入試験は、 一定量の打撃エネルギーを与えて抵抗体を地層中に打ち込み地層の抵抗を測定するも のである。標準貫入試験は、動的貫入試験に分類され、1930年頃アメリカの Terzaghi らによって規格化され、日本では昭和26年頃に初めて実施された。現在、 標準貫入試験は、日本工業規格(JIS A 1219)に規定されるほど広く普及している。

試験方法は、質量 63.5±0.5 kgのドライブハンマーを 76±1 cmの高さから自由落下 させることによって、標準貫入試験用サンプラーを地層中に打ち込むものである。試 験時には 15 cmの予備打ちを行い、その後、30 cm貫入(本打ち)させたときの打撃回 数を求めN値とする。また、N値は、貫入量 10 cmごとの打撃回数を記録し、打撃回 数が 50 回を超えた場合には 50 回打撃時の貫入量を記録する。 試験実施後には、ボ ーリングロッドを引き上げ、標準貫入試験サンプラー内に入った試料を十分に観察し た後、直ちにビニール袋と試料瓶に詰め、自然状態に近いまま保管した。

図 2-2.1 に標準貫入試験略図を示す。また図 2-2.2 に試験装置の略図を示した。

2-3 孔内水平載荷試験

本試験は、ボーリング孔の孔壁面を加圧し、その時の孔壁面の変形量(孔壁の広が り具合)を測定することによって、地盤の強さ及び変形特性を把握することを目的と して、実施した。

試験方法は、「1 室型等分布荷重方式・間接変形量測定方式」のLLT(Lateral Lord Tester)を採用する。

LLT は、ボーリング孔内に挿入したゴムチューブに高圧ガスを圧力源とする圧力水を 注入することによって孔壁面を加圧し、このゴムセルへの注入水量を測定することに よって、その時の壁面の変位量を測定する試験機である。なお、最大載荷圧力は、 2.5MPa である。

図 2-3.1にLLT 試験装置図を示す。

図 2-3.2 LLT 概要図

(「技術マニュアル;関東地質調査業協会編」より抜粋)

2-4 試料採取

本調査では、後述の室内土質試験に供する不攪乱試料を採取するために、N値の小 さい粘性土では一重管式(シンウォール型)サンプラーを、N値の大きい粘性土では 二重管式(デニソン型)サンプラーをそれぞれ用い、サンプリングを実施する。

前者のサンプリングでは、水圧式シンウォールサンプラーを用いる(図 2-4.1)。 このサンプラーは、所定深度のスライムの除去された孔底にサンプラーを降ろし、ピ ストンヘッドに加えられた水圧によりサンプリングチューブ(ステンレススチール製) を押し込むもので、給圧には泥水ポンプを利用する。このサンプラーは、ピストンエ クステンションロッドを使用しないので、その接続の手間が省け、深度が大きい場合 ボーリングロッドの座屈などに起因する試料の乱れを防止することが出来る。

後者のサンプリングでは、デニソンサンプラーを用いる(図 2-4.2)。このサンプ ラーは、メタルクラウンによって硬い粘性土を掘削しながらサンプリングを行うもの であり、サンプリング時にはチューブ内の試料の乱れが発生しないように注意した。

本調査では、土質に応じて両サンプラーを使い分け試料の採取をおこなった。試料 をチューブ内に採取した後は、縁切り回転をしないで直ちに引き上げ、チューブに衝 撃を与えないようにした。

図 2-4.1 シンウォール型サンプラー概要図 図 2-4.2 デニソン型サンプラー概要図

2-5 室内土質試験

本試験は、地盤の物理特性、力学特性及び圧密特性を把握することを目的として、実施した。

試験は、以下の表に示す規格に準じて実施した。なお、試験試料は乱れの少ない試料 をサンプラーにより採取したものを使用した。また、土の粒度試験の試験試料は標準 貫入試験時に採取した乱れた試料を使用した。

試験名	規格
土粒子の密度試験	JIS A 1202 JGS 0111
土の粒度試験	JIS A 1204 JGS 0131
土の三軸圧縮試験(UU)	JGS 0521
土の圧密試験	JIS A 1217 JGS 0411

表 2-5.1 室内土質試験の規格表室内土質試験一覧

§3 調査結果

3-1 調査地周辺の地形・地質

調査地は、東京メトロ日比谷線「三ノ輪駅」の南東約1km、東京都台東区東浅草 に位置している。標高は約2mである。

東京都は、関東平野の中南部に位置し、島嶼部を除けば東西に細長い分布をしている。東京都の領域は狭いが、地形の変化に富んでおり、大きく地形を区分すると西部の山地、中部の丘陵〜台地、および東部の低地に分類される。図 3-1.1 に東京都の地形区分図を示す。

調査地は東京都東部の東京低地に当たる。東京低地には、旧河道、後背湿地、自然 堤防などの微地形が広がっており、とくに上部では複雑な地層分布を示すことがあ る。

図 3-1.1 調査地周辺の地形区分図
 調査地
 (土地分類図 13(東京都):(財)日本地図センター)

現在の東京都東部地域には、第四紀更新世の最終氷期(約2万年前)に、河川の侵 食によって大規模な谷が形成されていた。また、この時期には、海面が現在より50 ~80m程低下し、東京湾の過半は陸地化していたと考えられている。これは、東京湾 横断道路のボーリング調査で当時の河道が確認されたことなどで裏付けられる。また 最終氷期には、現在台地となっている上野~お茶の水~品川の東方に河岸段丘が形成 された。

最終氷期が終わり、更新世末期~完新世の有楽町海進期(約1万年~6000年前) に入ると、東京低地や多摩川低地にあった谷は入江になり、浅海成の沖積層(七号地 層~有楽町層)が堆積した。この堆積により、前述の河岸段丘は沖積層に埋没したと 考えられている。さらにその後、小規模な海退(弥生海退)により、入江が陸地化し た。そして、江戸川・中川・荒川等の河川により、沖積層が堆積した(有楽町層の上 部)。

このような堆積過程を経たため、東京都東部の沖積層は、有機質泥・砂泥・砂・砂 礫層などから構成されており、層相に変化が認められる。

調査地では、埋土の下位に第四紀完新世の有楽町層に相当する沖積層を確認し、そ の下位には東京礫層である洪積砂礫層を確認した。

(表層地質図「東京東北・東南部」;東京都発行より抜粋)

3-2 調査ボーリング結果

本調査では、1箇所、計38mの機械ボーリング調査を行った。また、1m毎に計38 回の標準貫入試験を実施しN値の計測を行った。その結果の詳細は、巻末資料のボー リング柱状図に示すとおりである。

表 3-2.1 地質層序表に今回の調査地における地質層序を示す。

地質時代		地屋友	地層 記号	確認深度 (GL-m)	N值	
		地層石		No. 1	範囲	平均
	完新世	埋土層	В	2.70	_	_
		沖積砂礫層	Ag	6.80	$26 \sim 44$	32
		沖積砂質土層1	As1	9.00	20~21	20
第四紀		沖積粘性土層1	Ac1	14.40	0~1.8	1
		沖積砂質土層2	As2	15.70	1.6~1.7	1
		沖積粘性土層2	Ac2	27.80	0~3.8	2
	更新世	洪積粘性土層	Dc	31.70	$5 \sim 13$	8
		洪積砂礫層	Dg	37.90	50以上	50以上
		洪積砂質土層	Ds	38.29	50以上	50以上

表 3-2.1 地質層序表

※上記表は換算N値を含む

※平均値の算定は小数点以下切り捨てとした

以下、各層の概要を述べる。

1) 埋土層 [B]

層厚 2.70m。上部 150 mm までコンクリートである。以深、GL-0.30m まで砕 石である。以深、砂混じりシルト主体である。含水量中位、粘性中位である。 砂分を混入する。砕石を少量混入する。木片、レンガ片を混入する。

N値は 3.8~5を示すが、不均質な土質であることから参考値とすることが 望ましい。

2) 沖積砂礫層 [Ag]

層厚 4.10m。φ10 mm以下の亜円礫主体である。礫分 50~60%程度である。マ トリックスは粗砂である。含水量中位である。 N値は 26~44 を示す。

- 3) 沖積砂質土層1 [As1]
 層厚2.20m。層相は礫混じりシルト質中砂である。砂粒子不均一である。φ
 10mm 程度の亜円礫を少量混入する。含水量中位である。
 N値は20~21を示す。
- 4) 沖積粘性土層 1 [Ac1]
 層厚 5.40m。層相は砂質シルトである。含水量中位である。粘性やや強い。
 砂分を混入する。
 N 値は 0~1.8 を示す。
- 5) 沖積砂質土層 2 [As2]
 層厚 1.30m。層相はシルト質細砂である。砂粒子不均一である。シルト分を 混入する。含水量中位である。
 N 値は 1.6~1.7 を示す。
- 6) 沖積粘性土層 2 [Ac2]
 層厚 12.10m。層相はシルトである。含水量中位である。粘性やや強い。
 N 値は 0~3.8 を示す。
- 7) 洪積粘性土層 [Dc]
 層厚 3.90m。層相は硬質シルトである。含水量中位である。凝固状を呈する。砂分を混入する。
 N 値は 5~13 を示す。

8) 洪積砂礫層 [Dg]

層厚 6.20m。層相は砂礫である。 φ10 mm以下の亜円礫主体である。礫分 50~ 60%程度で、最大礫径は 50mm 程度である。マトリックスは中砂である。含水 量中位である。

N値は50以上を示す。

9) 洪積砂質土層 [Ds]

層厚 0.39m まで確認。層相は細砂である。砂粒子均一である。含水量中位である。

N値は50以上を示す。

※ 地下水について

本調査では無水掘削を実施し、GL-3.40mに地下水位を確認した。

なお、地下水位は降雨の影響、季節による変動があることに注意が必要である。

3-3 孔内水平載荷試驗結果

今回の調査では、GL-13.50mの沖積粘性土層1(Ac1)において孔内水平載荷試験 を行った。

表 3-3.1に試験結果を、表 3-3.2に変形係数の目安値を示す。

なお、試験結果の詳細については巻末資料「孔内水平載荷試験結果」に示す。

試験深度 (GL-m)	地層名	土層記号	N値	地盤係数 Km(MN/m³)	変形係数 E(MN/㎡)
13.50	沖積粘性土層1	Ac1	1	53.02	2.94

表 3-3.1 孔内水平載荷試驗結果

土の種類	変形係数 E (MN/㎡)
礫(密な)	$100.0 \sim 200.0$
砂(密な)	$50.0\!\sim\!80.0$
砂(緩んだ)	$10.0\!\sim\!20.0$
粘土 (固い)	$8.0\!\sim\!15.0$
粘土 (中くらいの)	$4.0 \sim 8.0$
粘土(軟らかい)	$1.5 \sim 4.0$
粘土(非常に軟らかい)	$0.5 \sim 3.0$

表 3-3.2 変形係数の目安値

※ 基礎の設計資料集 土質工学会より加筆

GL-13.50mのAc1層はE=2.94(MN/m²)を示し、表 3-3.2に示す「粘土(軟らかい)」に相当する値を示した。

3-4 室内土質試験結果

土の物理特性、力学特性、圧密特性を検討することを目的として、室内土質試験を実施した。表 3-4.1、表 3-4.2 に室内土質試験結果一覧を示す。

	試料番号	1-1	
採	取深度(GL−m)	13.50~14.30	
	湿潤密度 ρ t (g/cm ³)	1.663	
	乾燥密度 ρd (g/cm ³)	1.089	
	土粒子の密度 ρs (g/cm³)	2.607	
	自然含水比 Wn(%)	52.8	
	間隙比 e	1.396	
	飽和度 Sr(%)	98.6	
圧	圧縮指数 Cc	0.59	
密	圧密降伏応力 Pc(kN/㎡)	184	
せん	粘着力 C(kN/m ²)	61.8	
が断	内部摩擦角 ϕ (°)	0.0	

表 3-4.1 土質試験結果

表 3-4.2 粒度試験結果

	試料番号	8.15~8.45	10.15~10.49	13.15 \sim 13.45	15.15 \sim 15.53
	石分 (75mm以上) %	0	0	0	0
	礫分 (2~75mm) %	5.2	2.3	0	1.6
	砂分 (0.075~2mm) %	82.7	23.4	31.7	55.7
粒度	シルト分 (0.005~0.075mm) % 粘土分 (0.005mm未 満) %	12.1	74.3	68.3	42.7
	最大粒径 mm	19.00	9. 50	0.85	4.75

【物理特性】

◆湿潤密度・乾燥密度・自然含水比・土粒子の密度

湿潤密度は、土の単位体積当たりの全重量(土粒子及び間隙水の合計の質量)をいい、土粒子だけを考える場合を乾燥密度という。この試験は、地盤の締まり具合の判定・地盤の支持力と沈下の関係・土圧や斜面安定解析における土の自重算定に利用される。国内の一般的な土の密度等の測定例は、表 3-4.3、表 3-4.4 に示す。

	沖積世		洪積粘性十	関東ローム	高有機質十
	粘性土	砂質土		10 40 10	
湿潤密度 ρt(g/cm ³)	1.2~1.8	1.6~2.0	1.6~2.0	1.2~1.5	0.8~1.3
乾燥密度 ρd(g/cm ³)	0.5~1.4	1.2~1.8	1.1~1.6	$0.6 \sim 0.7$	0.1~0.6
含水比 Wn (%)	$30 \sim \! 150$	$10 \sim 30$	$20\!\sim\!40$	80~180	80~1200

表 3-4.3 日本における土の密度、含水比のおおよその範囲

(土質工学会:土質試験の方法と解説)

鉱物	密度 ps(g/cm³)	土質名	密度 ρs(g/cm³)		
石英	2.6 \sim 2.7	豊浦標準砂	2.64		
長石	2.5 \sim 2.8	沖積砂質土	2.6 \sim 2.8		
雲母	2.7 \sim 3.2	沖積粘性土	2.50 \sim 2.75		
角閃石	2.9 \sim 3.5	洪積砂質土	2.6 \sim 2.8		
輝石	2.8~3.7	洪積粘性土	2.50 \sim 2.75		
磁鉄鉱	5.1~5.2	泥炭(ピート)	1.4~2.3		
クロライト	2.6 \sim 3.0	関東ローム	2.7 \sim 3.0		
イライト	2.6 \sim 2.7	まさ土	2.6 \sim 2.8		
カオリナイト	2.5 \sim 2.7	しらす	1.8 \sim 2.4		
モンモリロナイト	2.0 \sim 2.4	黒ぼく	$2.3 \sim 2.6$		

表 3-4.4 主な鉱物と土粒子の密度の例

(土質工学会:土の試験実習書-第二回改訂版-)

試料 1-1 (13.50~14.30m)の試験結果は表 3-4.3、表 3-4.4 に示す「沖積粘性 土」の範囲内の値を示した。 【力学特性】

◆三軸圧縮試験結果

三軸圧縮試験は、力学特性を把握するために行い、採取した乱れの少ない試料を用いて行った。

試験結果は粘着力 c=61.8kN/m²、内部摩擦角 φ=0.0° を示した。

【圧密特性】

地盤の圧密変位量を推定するために圧密降伏応力(Pc)などの圧密定数が必要と なる。また、圧密降伏応力(Pc)と現在の有効土被り圧(Po)との関係から、地 盤が未圧密状態(Pc<Po)にあるか、過圧密状態(Pc>Po)にあるかについ ての判断ができる。この地盤の状態を表す指標として過圧密比OCRがあり、OCR が1以下であれば未圧密状態、1以上であれば過圧密状態となる。なお、OCRは以 下の式で求められる。

O C R = P c / P o

ここで、有効土被り圧(Po)を求めるためには、下式を使用する。

 $P o = \Sigma \gamma t \cdot h (kN / m^2)$

γ t : 単位体積重量(kN/m³), h : 層厚(m)

<算定結果>

検討対象は圧密試験を実施した試料とし、検討深度はそれぞれの試験試料の中心深 度とする。

・各層の γ t は後述する表 4-4.2 に設定した値とする。 埋土 (B) $\rightarrow \gamma$ t =18(kN/m³) 沖積砂礫層 (Ag) $\rightarrow \gamma$ t =20(kN/m³) 沖積砂礫層 (Ag) $\rightarrow \gamma$ t =10(kN/m³) ※地下水位以深 沖積砂質土層 1 (As1) $\rightarrow \gamma$ t =9(kN/m³) ※地下水位以深 沖積粘性土層 1 (Ac1) $\rightarrow \gamma$ t =6(kN/m³) ※地下水位以深

※計画建物の荷重は考慮していない。 ※地下水以深の単位体積重量は間隙水圧を考慮し、表 4-1.2の値から 10 程度差し引いた値を採用した

検討深度までにかかる土被り圧(P0)は以下のように算定できる。

 $\langle \text{GL-13.90m} \rangle$

 $P = (18 \times 2.7) + (20 \times 0.7) + (10 \times 3.4) + (9 \times 2.2) + (6 \times 4.9) = 145.8 (kN/m^2)$

地屆夕		沖積粘性土層1
-	吧眉石	(Ac1)
検	討深度	GL-13.90m
	圧縮指数	0.59
	Cc	0.00
	土被り圧	145 8
圧	P0 (kN/m^2)	145.0
密	圧密降伏応力	184
	Pc (kN/m^2)	184
	OCR	1.26

表 3-4.5 圧密試験結果及び有効土被り圧

以上より圧密試験から得られた圧密降伏応力(Pc)が上載荷重(P)を上回って おり(Pc>P)、現状においては「**過圧密」**の状態にあると判断できる。 §4 考察

4-1 設計用土質定数の提案

計画建物の設計の参考値とするために、各層の土質定数を提案する。土質定数は原 則として現場試験結果及び室内土質試験結果により設定するが、これら試験を実施し ていない場合は標準貫入試験結果(N値)からの換算値、または一般値を参考に設定 するものとする。

・設計N値: 原則として標準貫入試験の実測平均値を採用する。
 ※換算N値の上限は土砂では 50 とする。
 ※地層内でのN値が特異な値を示す場合やバラつきが大きい場合は
 特異値の除外や標準偏差を考慮した値を設定する場合がある。

・粘着力(C): 室内土質試験値を採用する。室内土質試験を実施していない場は N値より下記の換算式で求める。
砂・礫質土については、C=0とする。
粘性土についてはTerzghi-Peckの式 N=8qu(kgf/cm²)を、
qu(kN/m²)=12.5Nの式に変形した上で〔社団法人 日本道路協会 『道路橋示方書 第IV編 下部構造編』〕に示される式、C=qu/2に 代入し、C=6.25×N(kN/m²)の式を導いて求める。
(ここに、N:N値,C:粘着力)
一軸圧縮強度から求める場合はC=qu/2より求める。

・内部摩擦角(φ):室内土質試験値を採用する。室内土質試験を実施していない場合はN値より下記の換算式で求める。
 粘性土については、φ=0°と仮定する。
 砂・礫質土については、次式より求める。
 φ=√(20N) + 15°
 ・・・・・・・・・・・・・・・・・・
 日本建築学会『建築基礎構造設計指針』〕

・単位体積重量 (γ):ボーリング結果より表 4-1.1を参考に推定する。

	土質	緩いもの	密なもの			
	砂及び砂礫	18	20			
自然地盤	砂質土	17	19			
	粘性土	14	18			
	砂及び砂礫	2	0			
時	砂質土	19				
盛土	粘性土(ただし <i>WL</i> < 50%)	18				
	火山灰質粘性土	15				

表 4-1.1 盛土材・地盤の単位体積重量 (kN/m³)

(道路土工軟弱地盤対策工指針;日本道路協会 P54)

・変形係数(E): 孔内水平載荷試験または室内土質試験結果を採用する。これらの 試験を実施していない場合はN値より下記の換算式で求める。 設計N値を基に下式より推定する。

 $\mathbf{E} = 0.7 \cdot N \quad (\mathrm{MN}/\mathrm{m}^2)$

以上の式・表を用いて各層の土質定数を下表に示す。

地質	時代	地層名	地層 記号	N値	単位体積重量 ^{※1}	粘着力 C (kN/m²)	内部摩擦角	変形係数 E (MN/m ²)
		埋土層	В		18	_	_	_
		沖積砂礫層	Ag	32	20	0.0	40.3	22.4
	完新	产 沖積砂質土層1 As1 20		20	19	0.0	35.0	14.0
	世	沖積粘性土層1	Ac1	1	16.31^{2}	61.8^{2}	0.0^{2}	2.94 ^{**3}
第四紀		沖積砂質土層2	As2	1	17	0.0	19.5	0.7
		沖積粘性土層2	積粘性土層2 Ac2 2 14 12.5				0.0	1.4
		洪積粘性土層	Dc	8	18	50.0	0.0	5.6
	更新世	洪積砂礫層	Dg	50	20	0.0	46.6	35.0
		洪積砂質土層	Ds	50	19	0.0	46.6	35.0

表 4-1.2 調査地点における土質定数の提案値一覧表

※1 地下水位以下の単位体積重量は間隙水圧を考慮し上記の値より10程度差し引いた値となる

※2 室内土質試験結果より設定した

※3 孔内水平載荷試験結果を採用

4-2 液状化の検討

「建築基礎構造設計指針」に基づき、液状化の検討を行う。

同指針によると液状化の判定を行う必要がある土層は以下の通りである。

①地下水に飽和された GL-20m 以浅の沖積層

②考慮すべき土の種類は、細粒土含有率が35%以下の土とする。

※埋立地盤など人工地盤では、粘土分(0.005mm以下の粒径を持つ土粒子)含有率が10%以下、又は 塑性指数が15%以下の埋立あるいは盛土地盤については液状化の検討を行う。また、細粒土を含む 礫や透水性の低い土層に囲まれた礫は、液状化の可能性が否定できないので、そのような場合にも 液状化の検討を行う。

上記条件を考慮し、地盤状況により、地下水位以深から GL-20mまでの沖積層を対象に検討を行う。算定は以下の算定式および図をもとに行った。また、検討に必要な 土質定数は表 4-1.2 の値を用いた。

【算定式】

	Fı值	
]	F1 = R / T	L
]	$R = (\tau)$	L / σ'Z)
-	$L = (\tau \alpha)$	d∕σ'z)
	$\tau d \neq \sigma' z =$	γn (αmax/g) (σz/σ'z) γd
]	N = N 1 +	$\Delta \mathrm{N}\mathrm{f}$
]	$N1 = C N \cdot$	Ν
($C_N = \sqrt{(9)}$	98/σ'z)
2	こに、	
]	F1 :各注	架さにおける液状化発生に対する安全率
]	R :補〕	正N値(Na)に対する飽和土質の液状化抵抗比(図 4-2.1参照)
-	L :各注	架さに発生する等価な繰返しせん断応力比
	τd :水-	平面に生じる等価な一定繰返しせん断応力振幅 (kN/m ²)
	て1 :水子	平面における液状化抵抗(kN/m)
	ɔ´z :検討	討深さにおける有効土被り圧(鉛直有効応力)(kN/m)
,	yn :等1	曲繰返し回数に関する補止係数
	γ	n = 0.1 (M - 1)
	M	:マクニナュート まごにかけて記礼田北亚加速座(ユーク)
	α max :地表	衣囲にわりる設計用水平加速度(Cm/ S ~) わ加注度(m / - 2)
	g :里/	////
		討休さにわける主王恢り圧(如臣主応刀)(KN/III) 般が剛体でわいことにとる任遠反粉
	yu. rea	Δm 剛体 にないことによる 仏滅 体数 $d = 1 - 0.015 \sigma$
	γ ·	u — 1 0.0102 ・地表からの検封深さ(m)
ו	Z Na · 対I	、地なからの彼的体で(m) 志すろ深度の補正 N値
י נ	N1 ・ 拖1	
(CN :拘ī	東圧に関する換算係数
	∆Nf :細∛	粒土含有率Fcに応じた補正N値増分(図 4-2.2)

図 4-2.1 補正N値と液状化抵抗比

図 4-2.2 細粒分含有率とN値の補正係数

② P_L値 P_L = $\sum_{i=1}^{n} F \cdot W(z) \cdot \Delta Z$ F = 1.0 - F_L (≥ 0) W(z) = 10.0 - 0.5 · z ここに、 F_L : F_L値

- W(z): 深さ方向の重み係数
- z : 地表面からの深さ(m)
- Δ Z : ある深度のFLが分布すると想定される土層厚(m)
 Δ Z 算定のための境界は下のように定める。
 - 隣接するFLが同一な土層のとき→両FLの深度の中間深度
 隣接するFLが異なる土層のとき→土層の境界深度

③ 表変位 Dcy

図 4-2.3 から、補正 N 値 (Na)、繰返しせん断応力比 (L= τ d/ σ 'z)に対応 する各層の繰返しせん断ひずみ (γ cy)を推定する。各層の繰返しせん断ひ ずみ (γ cy)を堆積ひずみと読み換え、下式から沈下量 (S)を求め、Dcy と する。

 $Dcy = S = H \cdot \gamma cy$

ここに、	
Dcy	:液状化に伴う予測地盤変位量(cm)
S	: 沈下量(cm)
Н	:液状化層の厚さ (m)
rcy	:各層の繰返しせん断ひずみ(%)

図 4-2.3 補正 N 値とくり返しせん断ひずみの関係

上記の算定式を用い、液状化の可能性を計算する。

<算定条件>

・マグニチュード7.5

・水平加速度150(小規模地震)、200(中規模地震)、350gal(大規模地震)

<算定結果>

液状化判定結果については巻末に示す。

なお、室内土質試験結果にて細粒分含有率が35%を下回る深度を検討対象層とし て算定を行った。算定結果の一覧を表 4-2.1に示す。

計算深度	細粒分 含有率	実測	水平加速度 αmax (gal)											
GL=	Fc	N値	15	50	20	00	35	350						
(11)	(%)		FL	判定	FL	判定	FL	判定						
1.31		3.75		0	_	0		0						
2.30	_	5.00		\bigcirc		\bigcirc		\bigcirc						
3.33	_	34.00		0		0		0						
4.30		44.00		0		0		0						
5.30	_	27.00		0		0		0						
6.30		26.00		0		0		0						
7.30	12.1	20.00	4.207	0	3.155	0	1.803	0						
8.30	12.1	21.00	4.188	0	3.141	0	1.795	0						
9.33	68.3	1.71	—	0		0	—	0						
10.32	68.3	1.76		\bigcirc		\bigcirc		0						
11.33	68.3	1.67	—	0		0	—	0						
12.34	68.3	1.58	—	0		0	—	0						
13.30	68.3	0.00	—	0	—	0	—	0						
14.73	42.7	1.71	—	0		0	—	0						
15.34	42.7	1.58	—	0	—	0	—	0						
16.31		0.00	—	0		0	—	0						
17.31		0.00		0		0		0						
18.32		2.73		0		0		0						
19.31		1.94		0		\bigcirc		0						
20.31		2.81		0		0	<u> </u>							
液	ō状化指数I	ъГ	0.0	000	0.0	000	0.0	000						
地表	変位Dcy	(cm)	0.	0	0.	. 0	0.	0						

表 4-2.1 液状化検討結果一覧

×液状化する可能性あり 〇非液状化

F L 値による判定

液状化発生に対する安全率 FL の算定結果は表 4-2.1 に示すとおりである。また、表 4-2.3 には FL 値による判定基準を示した。

表 4-2.2 安全率 FL による判定

FL > 1	非液状化層
$F1 \leq 1$	液状化する可能性あり

どの水平加速度(地震規模)においても、安全率 FL が1を下回る土層は確認 されなかった。

P (値による判定)

液状化指数 P_L値の算定結果は表 4-2.1 に示すとおりである。また、表 4-2.3 には P_L値による液状化の危険度の目安を示した。

P _L =0	液状化の危険度が極めて低い
$0 < P_L \leq 5$	液状化の危険度が低い
$5 < P_L \leq 15$	液状化の危険度が高い
$15 < P_L$	液状化の危険度が極めて高い

表 4-2.3 液状化指数(PL)による液状化の危険度

- ・150gal (小規模地震)・・・「液状化の危険度が極めて低い」
- ・200gal(中規模地震)・・・「液状化の危険度が極めて低い」

・350ga1(大規模地震)・・・「液状化の危険度が極めて低い」

③ Dcy 値による判定

地表変位 Dcy の算定結果は表 4-2.1 に示とおりである。また、表 4-2.4 には Dcy による液状化の危険度を示した。

D _{cy} (cm)	液状化の程度
0	なし
5以下	軽微
5を超え10以下	小
10を超え20以下	中
20を超え40以下	大
40を超える	甚大

表 4-2.4 Dcy と液状化の程度

・150gal (小規模地震)・・・「なし」

200gal (中規模地震)・・・「なし」

・350gal (大規模地震)・・・「なし」

【液状化に関する総合判定】

各水平加速度(地震規模)の検討において安全率1を下回る土層は確認されなかった。PL及びDcyの検討においても、地震時に地表面への影響は見られない結果となった。したがって、設計時には上記検討結果を踏まえた上で、適切な設計・施工に対する検討が望まれる。

本調査結果は今後、詳細設計条件決定後、適切な工法選定・設計・施工の検討における基礎資料とするものである。

以上

〔巻末資料〕

調査地点位置図 ボーリング柱状図 孔内水平載荷試験 室内土質試験結果 液状化検討結果 記録写真

調査地点位置図

ボーリング柱状図

ボーリング柱状図

調査名

地質調査

ボーリングNo

事業・工事名

		- シートNo -
ボーリング名	No.1 調査位置 東京都台東区東浅草	北 緯
発注機関	調査期間 令和 1年 8月 1日 ~ 1	1年8月3日 東 経
調査業者名	主任技師 現 場 コ ア 発生 代 理 人 鑑 定 者	ボ−リング 責 任 者
孔口標高	KBM 角 180° 方 北 0° 地 使 +0.12m 上 90° 270° 90° 盤 小 水平0° 用	ハンマー 落下用具 半 自 動 落 下 装 置
総掘進長	$38.29m$ \mathbf{g} ∇ \mathbf{h}	ポンプ GP-5

-

	標	標	層	深	柱	土	色	相	相	記		孔内					標	準 貫	て入	試 験			原	位	置	試 験	試業	斗採	取	室	ŧ
$ \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} & \mathbf{y}$						質		対	対			水位	深	10cm 封丁 動	ごとの : 回 **	打撃			N	価	Ī		深	試 お	験 よび	名 結果	深	試	採	内試験	ì
Max M	尺	一同	厚	度	状	区		密	稠			(m) / 測	度	0 1	10 20	3 数			_	——————————————————————————————————————			度				度	料	取	$\widehat{}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(m)	(m)	(m)	(m)	ছ	公	調	唐	唐	重		定月	(m)	2	2 2	頁 入 量							(m)				(m)	番	方法	$\overline{}$	
		(111)	(111)			7.	нин			デ 上部150mmコンクリート				10 2	20 30) (cm)) ()]	.0	20	30	40 5				/		7	14		
	- 1					埋	暗裼			GL-0.30mまで砕石. 以深.砂混じりシルト主体. 含水中位.粘性中.			1.15	1	$1 \frac{2}{12}$	4	3.8	9					_				-				
1 1	- 2	0.50	0.50	0.50			1.67			10分混入. 砕石、少量混入. 木片・レンガ片混入.			2.15	2	2 1	5 30	5						_				-				
1 1	- 3	-2.58	2.70	2.70								8/2 3.40	3.15	8 :	10 16	34 30	34				-a		_				-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 4							密 な ~		<u> </u>			3.45 4.15	14	14 16	44 30	44						_				-				
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	- 5					砂礫	暗灰	中ぐら		含水中位. 礫分・50%~60%位. φ10mm以下の亜円礫主体. マトリックスは粗砂.			4.45 5.15	10	9 8	27	27			@			_				-				
1 1 <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>らい</td> <td></td> <td></td> <td></td> <td></td> <td>5.45 6.15</td> <td>9</td> <td>6 11</td> <td>26</td> <td>26</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	6							らい					5.45 6.15	9	6 11	26	26										-				
$ \begin{bmatrix} a \\ b \\ b \\ c \\ c$	- 7	-6.68	4.10	6.80									6.45 7.15	7	7 6	20	20										-				8
0 90 200 90 100 </td <td>- 8</td> <td></td> <td></td> <td></td> <td></td> <td>礫混じりシルト質中</td> <td>暗灰</td> <td>中ぐら</td> <td></td> <td>含水中位. 粒子・不均一. 不均質. φ10mm位の亜円礫、少量混入. シルト分混入</td> <td></td> <td></td> <td>7.45 8.15</td> <td>6</td> <td>7 8</td> <td>21</td> <td>20</td> <td></td> <td>1</td>	- 8					礫混じりシルト質中	暗灰	中ぐら		含水中位. 粒子・不均一. 不均質. φ10mm位の亜円礫、少量混入. シルト分混入			7.45 8.15	6	7 8	21	20														1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 9	-8.88	2.20	9.00		11少		い					8.45 9.15	1,	1	30	21										8.15		(P) #	粒度	
11 11 <td< td=""><td>- 10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9.50</td><td>16</td><td>19 1</td><td>35</td><td>1.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 10 15</td><td></td><td></td><td></td><td></td></td<>	- 10												9.50	16	19 1	35	1.7										- 10 15				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11					石山			非				10.49	18	16	34	1.8	0									10.49		(P) #	粒度	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10					町シ	暗灰		市に軟	含水中位. 粘性やや大. 砂分混入.			11.10	19	17	36	1.7	0													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 12					ルト			ら か い				12.15	1 19	1 19	2 38	1.6	9													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 13										完		13.15	- ハン-	マー自	7 <u>7</u> 30	00	 > \					13.20	FLI	 内水平	載荷試覽	13.15 13.50 13.45		(P) #	粒度 三軸・	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 14	-14.28	5.40	14.40				-124-			新 _ 世		14.55	1	1	2	1 7						13.80				14.30	1-1	(1) j	王密	
16 17 18 11 <	15	-15.58	1.30	15.70		シルト 質細砂	暗灰	非常 に緩 い		含水中位. 粒子・不均一. 不均質. シルト分混入.			15.15	$\begin{array}{c} 18 \\ 1 \\ 19 \end{array}$	1 1 19	35 2 38	1.6	\$									15.15		P #	粒度	
17 18 19	16												16.15	- 	マー自	0 72 32	00	<u>}</u>									-				
18	17												17.15	- 	<u>マー自</u>	0 72 31	00	{					-				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18												18.15	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	2.7	<u>\</u>					_				-				
$ \begin{array}{c} 22 \\ 21 \\ 22 \\ 22 \\ 23 \\ 24 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26$	- 19												18.48 19.15	$\frac{1}{16}$	1	2 31	1.9	6					_				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20								非常				19.46 20.15		1 1	3	2.8						_				-				
22 $\stackrel{1}{\nu}$ <	- 21								に 軟 ら				20.47 21.15	1	1 1	3	0.7						_				-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22					シルト	暗 灰		かい)	含水中位. 粘性やや大.			21.48 22.15	12	1 1	33	2. (_				-				-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23								、軟ら、				22.46	1	11	31	2.9						_				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 24								ربا دلا				23.45	1	1 1	<u>30</u> 3	3	•									_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 25												24.45		1 1	30	3	0													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													25.45		1 1	30	3	0													
	20												26.15		- 1 -	30	3	0													

27		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
28 29 30 31 -31 58 3 90 31 70 	中 く ら 含水中位. 凝固状を呈する. い 砂分混入. の GL-28.00~29.00m付近、 と 色調若干不安定. 硬 い	凝固状を呈する. 29.00m付近、 安定. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	暗 非 含水中位. 礫分・50%~60%位. 最大礫径φ50mm位. % 更新 暗 広 含水中位. 礫分・50%~60%位. 最大礫径φ50mm位. % (************************************	 薬分・50%~60%位. 50mm位. の亜円礫主体. 第 32.15 850 850 887.5 33.1539 11 1350 1315.4 33.28 34.16 35.29 414 14 1407.1 35.29 36.15 114 14 1407.1 36.26 37.27 22 28 4 14 14 1407.1 数子・均一. 均質. 38.29 4 14 14 1407.1	

孔内水平載荷試驗結果

測定結果図

調査名 No. 1 測定年月日令和1年8月2日 土質名砂質シルト N 値0

測定深度GL.-8.00m

静止土圧 Po	降伏圧 Py	破壊圧 P1	地盤係数 K	変形係数 E	中間半径 rm
kN∕m²	kN∕m²	kN∕m²	MN/m^3	MN/m^2	c m
44.0	110.9	294.7	53.02	2.94	4.27

調査名 No. 1 測定年月日令和1年8月2日 孔内水位GL.-3.40m 初期スタンドパイプの水位 0.5 cm 挿入後スタンドパイプの水位 0.6 cm ポアソン比 0.3

試 験 者

測定深度GL.-8.00m

 $P s=0.0 kN/m^2$

セル水圧	ガス圧	スタン	ドパイプの)読み H'	c m	d H	Н	ΡG	PG-P	Ре	r
kN/m²	kN/m²	15"	30"	60"	120"	c m	c m	kN/m²	kN∕m²	kN/m²	c m
20	20	0.7	0.7	1.0	1.0	0.3	0.5	9.0	-11.0	11.0	4.04
30	10	1.1	1.2	1.0	1.0	0.1	1.0	10.0	10.0	10.0	4.00
40	40	1.5	1.6	1. (1. (0.1	1.2	21.0	-18.2	18.2	4.09
60	60	2.0	2.1	2.2	2.2	0.1	1. (28.8	-31.3	31.3	4.12
80	80	2.5	2.7	2.8	2.8	0.1	2.3	36.0	-44.0	44.0	4.16
100	100	3.0	3.1	3.2	3.2	0.1	2.7	40.0	-60.0	60.0	4.19
120	120	3.5	3.6	3.6	3.7	0.1	3.2	45.0	-75.0	75.0	4.22
150	150	4.0	4.2	4.2	4.3	0.1	3.8	51.0	-99.0	99.0	4.26
180	180	4.7	4.8	4.9	4.9	0.1	4.4	56.6	-123.4	123.4	4.30
220	220	5.5	5.7	5.8	5.9	0.2	5.4	65.1	-154.9	154.9	4.37
257	260	6.4	6.6	6.7	6.9	0.3	6.4	72.3	-184.7	184.7	4.44
294	300	7.5	7.7	7.9	8.1	0.4	7.6	78.1	-215.9	215.9	4.51
332	340	8.8	9.1	9.4	9.6	0.5	9.1	84.5	-247.5	247.5	4.61
370	380	10.0	10.5	10.7	11.5	1.0	11.0	92.2	-277.8	277.8	4.73
408	420	11.8	12.2	13.0	13.6	1.4	13.1	99.5	-308.5	308.5	4.85
444	460	14.3	14.8	15.5	16.4	1.6	15.9	105.3	-338.7	338.7	5.02
482	500	17.4	18.0	19.0	20.8	2.8	20.3	112.8	-369.2	369.2	5.26
530	550	22 0	23 0	25 0	28 0	5.0	27.5	122 1	-407 9	407 9	5 64

室内土質試験結果

土 質 試 験 結 果 一 覧 表 (基礎地盤)

調査件名

整理年月日 2019年8月 日

整理担当者

詁	、 料	番号	1-1					
	(深	さ)	(13.50~14.30m)	(8.15∼8.45m)	(10.15∼10.49m)	(13.15∼13.45m)	(15.15∼15.53m)	
	湿潤密	度 P _t g/cm	³ * 1.663					
	乾燥密	度 ρ _d g/cm	1^3 * 1.089					
	土粒子の密	š度 ρ _s g/cm	2.607					
	自然含水	比 W n 9	· * 52.8					
般	間 隙	比 e	* 1.396					
,		度 Sr %	* 98.6					
	石 分 ('	<u>~ ~</u> , , 75mm 以上) %	/					
	·····································	$2 \sim 75 \text{mm})$ %		5.2	2.3	0.0	1.6	
粉	₩ 分($0.075 \sim 2 \text{mm})$	 /	82 7	2.0	31.7	55 7	
4 <u>.</u>	$\frac{1}{2}$	005~0 075mm) 0		02.1				
	ッレトリ (0 *ト 上 八 ¹⁾ (0	.005 ·0.013mm) /	0 	12. 1	74. 3	68. 3	42. 7	
		1005mm木(両) 7	0 	10.0		0.950	A 75	
rda:	取 人 松	佺 IIII 	11 	19.0	9.50	0.850	4.75	
度	以 寺 係	<i>致 U_c</i>						
	囲	致 U _c '						
レンシ	液性限	界 W _L 9	ó					
ステン	塑性限	界 W _P 9	6					
シー	塑性指	数 I _P						
特性								
分	地盤材料	の		細粒分礫まじり砂	砂質粘性土	砂質粘性土	細粒分質砂	
1	分類	名						
類	分類記	号		(S-FG)	[CsS]	[CsS]	(SF)	
	試 験 方	法	段階載荷					
圧	圧 縮 指	数 C _c	0. 59					
	圧密降伏応	、力 þ _c kN/m	² 184					
密								
	一軸圧縮強	えさ q_u kN/m	2					
軸								
圧								
縮								
	試験条	件	UU 三軸					
せ		c kN/m²	61.8	+		+		
	全応力	φ	0.0	+		+		
h				+		+		
断	有効応力	φ' °				<u> </u>		
		<i>r</i>		+		+		
				+				
	 					1) 7	- 八大阪ハナ-75	n 土津の上所社町
村記号	尹坦					1) イ	コガを味いた/Smi	□ 木両の工貨材料

*印は、三軸圧縮試験の供試体より求めた。

に対する百分率で表す。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

J I S A 1 2 0 2 J G S 0 1 1 1

土 粒 子 の 密 度 試 験 (測 定)

調査件名

試験年月日 2019年8月 日

2019年8月

試 験 者

試 料 番	号 (深 さ)	1-1	(13.50~14.	30m)			
ピクノ、	メ — タ — No.	253	254	255			
(試料+蒸留水+ピ)	7ノメーター)の質量 m _b g	190.351	181.043	181.539			
m_b をはかったと	きの内容物の温度 T $^\circ { m C}$	22	22	22			
T℃における	→蒸留水の密度ρ _w (T)g/cm ³	0.9978	0. 9978	0.9978			
温度T ℃の蒸留オ (蒸留水+ピクノ	くを満たしたときの m ¹⁾ メーター)質量 m ¹⁾ g	179.261	169.314	171.807			
	容器No.	253	254	255			
試料の	(炉乾燥試料+容器)質量 g	97.867	82.440	82.524			
炉乾燥質量	容器質量g	79.880	63.456	66. 756			
	m _s g	17.987	18.984	15.768			
土粒子(の密度 $ ho_s$ g/cm 3	2.602	2.611	2.607			
平 均	値 ρ _s g/cm ³		2.607				
試料番	号 (深 さ)						
ピクノ	メ — タ — No.						
(試料+蒸留水+ピク	ァノメーター)の質量 m _b g						
$m_b \varepsilon$ はかったと	:きの内容物の温度 T $^\circ \mathbb{C}$						
T℃における	o蒸留水の密度ρ _w (T)g/cm ³						
温度T ℃の蒸留オ (蒸留水+ピクノ	くを満たしたときの m ¹⁾ メーター)質量 m ¹⁾ g						
	容 器 No.						
試料の	(炉乾燥試料+容器)質量 g						
炉乾燥質量	容器質量g						
	m _s g						
土粒子(の密度 ps g/cm ³						
平均	値 ρ _s g/cm ³						
試料番:	号 (深 さ)						
ピクノ、	メ — タ — No.						
(試料+蒸留水+ピク	ァノメーター)の質量 m _b g						
$m_b \varepsilon$ はかったと	:きの内容物の温度 T $^\circ \mathbb{C}$						
T℃における	→蒸留水の密度ρ _w (T)g/cm ³						
温度T ℃の蒸留オ (蒸留水+ピクノ	<を満たしたときの m ¹⁾ メーター)質量 m ^a g						
	容 器 No.						
試料の	(炉乾燥試料+容器)質量 g						
炉乾燥皙量	容器質量g						
〃 ┮⊔/东只里	m _s g						
土粒子。	の密度 ρ_s g/cm ³						
	值 o. g/cm ³						

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_s = \frac{m_s}{m_s + (m_a - m_b)} \rho_w \, (T)$$

J I S A 1 2 0 4 JGS 0131

土の粒度試験(粒径加積曲線)

調査件名

試験年月日 2019年8月)日

シー 取り シー

						試 験	者		
試料番	号				試 料	番号			
(深 さ) (8.15)	∼8. 45m)	(10.15)	~10.49m)	(深	さ)		(8.15∼8.45m)	$(10.15 \sim 10.49 \text{m})$
	粒径 mm	通過質量百分率%	粒径 mm	通過質量百分率%	粗 礫	分	%	0.0	0.0
	75		75		中 礫	分	%	2.2	0.7
2	53		53		細 礫	分	%	3.0	1.6
~)*	37.5		37.5		粗 砂	分	%	10.0	1.1
Z	26.5		26.5		中 砂	分	%	54.8	5.6
.°	19	100.0	19		細 砂	分	%	17.9	16.7
	9.5	99. 5	9.5	100.0	シルト	分	%	10.1	74.9
(v	4.75	97.8	4.75	99.3	粘 土	分	%	12.1	74. 3
	2	94.8	2	97.7	2mm ふるい通	過質量百分率	%	94.8	97.7
分	0.850	84.8	0.850	96.6	425µmふるいi	通過質量百分率	%	54.0	94.3
	0.425	54.0	0.425	94.3	75µmふるい通	過質量百分率	%	12.1	74.3
析	0.250	30.0	0.250	91.0	最 大 粒	径	mm	19.0	9.50
	0.106	13.6	0.106	77.1	60 % 粒	· 径 D ₆₀	mm	0. 481	
	0.075	12.1	0.075	74.3	50 % 粒	· 径 D ₅₀	mm	0. 391	
					30 % 粒	: 径 D ₃₀	mm	0. 250	
~+>					10 % 粒	: 径 D ₁₀	mm		
(/L					均等係	、数 U _c			
降					曲率係	数 U' _c			
					土粒子の	密度 ρ _s g	/cm ³		
分					使用した分散	剤			
析					溶液濃度、溶	液添加量			
ΨI					20 % 粒	: 径 D ₂₀	mm	0. 172	
					記	号		-0-	-•-
100									
90	粒径加積曲線								
					d diamage				
80									
्र ु 70									
S) E									
^{₩ 60}									
宋 50									
[™] 40									
世国 30									
				\mathcal{N}					
20									
10									
oE									
0.00	L	0.01		0.1 4:5	1.0			10	50 100
	0	.005	0	和上 .075 0.250	1至 (m) 0.850	1 m) 2	4.75	19	75
粘	i ±	シル	~ ŀ	細 砂	中 砂 粗	1 砂 細 硝	樂	中 礫 🏼 🔅	粗礫

JISA 1204 JGS 0131

土の粒度試験(粒径加積曲線)

調査件名

試験年月日

日 2019年8月 日

試 験 者

JGS 0051

地盤材料の工学的分類

調査件名

試験年月日 2019年8月 日

試 験 者

	試	料者	昏号								
	(2	飛	さ)			(8.15∼8.45m)	(10.15~10.49m)	(13.15∼13.45m)	$(15.15 \sim 15.53 m)$		
石	分	·(75m	m以上	:)	%						
礫	分	$(2 \sim)^{2}$	75mm)		%	5.2	2.3	0.0	1.6		
砂	分	· (0. 0'	$75 \sim 2$	2mm)	%	82.7	23.4	31.7	55.7		
細 米	泣 分	(0.0	75mm∋	未満)	%	12.1	74.3	68.3	42.7		
シル	ト分	(0.00	$5 \sim 0.$	075mm) %						
粘	土 分	(0.00	05mm∋	未満)	%						
最	大	粒	径		mm	19.0	9.50	0.850	4.75		
均	等	係	数	U _c							
液	性	限	界	$w_{\rm L}$							
塑	性	限	界	w_{P}	%						
塑	性	指	数	I _P	%						
地盤	材料	の分	類名			細粒分礫まじり砂	砂質粘性土	砂質粘性土	細粒分質砂		
分	類	記	号			(S-FG)	[CsS]	[CsS]	(SF)		
	例	記	号			0	0	•		[[

土の段階載荷による圧密試験 (計算書)

JIS A 1217

JISA 1227

調査件名

試験年月日

 $\overline{H} = (H + H')/2$

 $S_{\rm ro} = w_{\rm o} \rho_s / (e_{\rm o} \rho_w)$

曲線定規法: $c_v = 70.9 \times \overline{H}^2/t_{50}$

[1kN/m²≒0.0102kgf/cm²]

 $k' = c_{v'} m_v \gamma_w / (8.64 \times 10^6)$ ただし, $\gamma_w = 9.81 \text{ kN/m}^3$

 $m_{v} = (\angle \epsilon / 100) / \angle \rho \qquad k = c_{v} m_{v} \gamma_{w} / (8.64 \times 10^{6})$

20194

Ħ
F

試料	番号(深さ)	1 - 1 (13.	50~14.30m)			試 験 者		
試験	钅機 No.			直 径 D	cm 6.0	000 初 含水	:比 w。 %	58.7
最低/	~最高室温	°C	26~30	断 面 積 A	cm^2 28.	27 期 間隙	比 <i>e</i> _, 体積比<i>f</i>_	1.522
土質	〔名称		=+	高さ H_{o}	cm 2.0	000 状 湿潤	密度 ρ_t g/cm ³	1.640
土粒	子の密度 Ps g	g/cm ³	2.607	"質量m _o	g 92.	74 態 飽和	I度 S _{ro} %	100.5
液性	E限界 W _L	%		炉乾燥質量 m _s	g 58.	44 圧縮指	数 C _c	0.59
塑性	E 限 界 W _P	%	14	実質高さ H _s	cm 0.79	929 圧密降伏の	芯力 $P_{ m c}$ kN/m ²	184
載荷	圧密圧力 P	压力增分 $ P $	圧 密 量⊿	日 供試体高さ 日	平均供試体高さ 日	圧縮ひずみ	体積王縮係数 m _v	間隙比 <i>e=H/H_s-1</i>
段階	kN/m^2	kN/m^2	cm	cm	cm	$\bigtriangleup_{\varepsilon} = \bigtriangleup H/H \times 100\%$	m^2/kN	体積比<i>f=II/II</i>s
0	0.0			2.0000				1. 522
		4.9	0.0031		1. 9984	0.155	3. 17E-04	
1	4.9			1. 9969				1.518
		4.9	0.0046		1.9946	0.231	4.71E-04	
2	9.8			1. 9923				1. 513
		9.8	0. 0113		1. 9866	0.569	5.80E-04	
3	19.6			1.9810				1.498
		19.6	0. 0168		1.9726	0.852	4.35E-04	
4	39.2			1.9642				1.477
		39.2	0. 0225		1.9529	1.152	2.94E-04	
5	78.5			1.9417				1.449
		78.5	0.0411		1.9211	2.139	2.73E-04	
6	157			1. 9006				1. 397
		157	0.1122		1.8445	6.083	3.88E-04	
7	314			1.7884				1.255
		314	0. 1415		1.7176	8.238	2.63E-04	
8	628			1. 6469				1.077
		628	0. 1199		1. 5869	7.555	1.20E-04	
9	1255			1. 5270				0.926
		-1250	-0.1040		1.5790	-6.586	5. 27E-05	
10	4.9			1. 6310				1.057
載荷	平均圧密圧力₽	t90 , 450 -	圧密係数 C _v	透水係数 k	一次圧密量 <i>△H</i> 1	一次圧密比	補正圧密係数	透水係数 k'
段階	kN/m^2	m_1n	cm^2/d	m/s	cm	$r = \angle H_1 / \angle H$	$c_v' = rc_v \text{ cm}^2/\text{d}$	m/s
1	2.5	0.18	6602	2.38E-08	0.0009	0.303	1998	7.19E-09
2	6.9	0.31	3905	2.09E-08	0.0012	0.265	1035	5.53E-09
3	13.9	0.29	4161	2.74E-08	0.0031	0.273	1138	7.50E-09
4	27.7	0.46	2597	1.28E-08	0.0054	0.319	829	4.09E-09
	55.5	0.51	2283	7.62E-09	0.0072	0.319	729	2. 43E-09
6	111	0.65	1739	5.39E-09	0.0124	0.302	525	1.63E-09
7	222	3.66	284	1.25E-09	0.0547	0.487	138	6.09E-10
ģ [444	2.91	309	9.22E-10	0.0793	0.560	173	5.17E-10
a	888	1.76	436	5.96E-10	0. 0650	0.542	236	3. 23E-10
10-	特記事項				$H_{\rm s} = \overline{m_{\rm s}}$	$/(\rho_s A)$	$\overline{p} = \sqrt{p \cdot p'}$	
					H = H	- ∠ H	$\forall t$ 法: $c_n = 305 \times$	H^{-}/t_{90}

[1kN/m²≒0.0102kgf/cm²]

J G S 0 5 2 0

土の三軸試験の供試体作製・設置

調査件名

試験年月日

2019年8月 日

試料番号(深さ) 1-1 (13.50~14.30m)

試 験 者

供試	体を	用いる試	験の基	ま 準番り	号と名称	J	GS 0521 土の非日	E密非排水(UU)三軸圧	縮試験	
試	料	Ø 3	状	態 1)	乱さな	:1)		土粒子の密度	$\rho_{s}^{3)}$ g/cm ³	2.607
供	試	体 の	作	製 ²⁾	トリミ	ング法			4)	
土	貸	〔 名		称					4)	
	供	試		体	No.		1	2	3	
							3.49	3.46	3. 45	
		直	谷	<u>r</u>		cm	3.48	3. 47	3. 45	
							3.48	3.48	3. 48	
	平	均	直	径	D_{i}	cm	3. 48	3. 47	3.46	
初							6. 98	6. 99	6. 98	
		高	đ	<u>.</u>		cm	6. 98	6. 99	6. 98	
11 19							6.98	6. 99	6. 98	
朔	平	均	高	さ	$H_{ m i}$	cm	6. 98	6.99	6. 98	
	体			積	V_{i}	cm ³	66. 39	66.10	65.63	
状	含	水		比	w i	%	54.5	54.4	49.6	
	質			量	<i>m</i> _i	g	109.93	108.86	110.69	
態	湿	潤	 密	度	ρ _{ti} ³⁾	g/cm ³	1.656	1.647	1. 687	
	乾	燥	密	度	ρ _{di} ³⁾	g/cm ³	1.072	1.067	1. 128	
	間	隙		 比	e _i ³⁾		1. 433	1. 443	1. 311	
	飽	和		度	$S_{ m ri}{}^{3)}$	%	99.2	98.2	98.5	
	相	対	 密	度	$D_{\rm ri}{}^{3)}$	%				
		軸変	位量	:の 測	」 定 方 法			1 1		
設	設置	置時の重	铀変亻	立量		cm				
置	飽利	口過程の	軸変	位量		cm				
•	軸	変	位	量	$ agenumber H_i^{(5)}$	cm				
胞		体積	変化	量の測	則定方法			I		
调	設置	置時の体	積変	化量		cm ³				
程	飽利	口過程の体	本積変	化量		cm ³				
	体	積 変	化	量	$ riangle V_i^{(5)}$	cm ³				
圧	高			さ	H_{0}	cm				
密	直			径	D 0	cm				
前	体			積	V 0	cm ³				
試	乾	燥	密	度	ρ _{d0} ³⁾	g/cm ³				
験	間			比	e ₀ ³⁾					
前	相	対	密	度	$D_{r0}^{3)}$					
	容	器		No.			1	2	3	
<i>"</i> 乾	(炉戟	5燥供試体	+容器))質量		g	71.14	70.52	74.01	
燥	容	器	質	量		g				
後	炉	乾燥	質	量	<i>m</i> _s	g	71.14	70.52	74.01	
								· · · · · · · · · · · · · · · · · · ·		

特記事項

1) 試料の採取方法, 試料の状態 (塊上,凍結,ときほぐされた)等を記載する。

2) トリミング法, 負圧法の種別, 凍結試料の場合は解凍方法等を記載する。

3) 必要に応じて記載する。

4)必要に応じて粘性土の場合は液性限界,塑性限界,砂質土の場合は最小乾燥密度, 最大乾燥密度等を記載する。

5) 設置時の変化と飽和過程およびB 値測定過程での変化を合わせる。

1kN/m²≒0.0102kgf/cm²] 1MN/m²≒10.2kgf/cm²]

 $[1kN/m^2 \doteq 0.0102kgf/cm^2]$

液状化検討結果

	適用	用式		建	建築基礎構造設計指針式(2001)											
	調査	件名														
	調査	住所		東	東京都台東区東浅草											
	調査	位置														
	ボーリ	ングジ	<u>名</u>	No.	. 1											
	11日月	<u>票高 (m</u>)	KBI	<u>M+0.</u>	<u>. 12</u>										
	<u>地下기</u>	<u>K位(m</u>)	GL	<u>-3.4</u>	40										
	低源	<u>(1糸数</u> 	18	0.0	U15											
	マクニー	<u>ナユー</u> + 争 55 「	- <u>ト</u>	/. 	<u>00c</u> 	ノムロップラー			<u>_ 0</u> г	₩ か ∽	/ ᆂᅡᆂ 八 4	シナホイ	10∿ + +			
	前昇刈	豕 軋	<u>#</u>	地	<u>トル</u> 一		$\frac{z_{n}}{1}$	<u>ru≧30% ru</u> ,	> 30		(柏上方)	ヨ日平三	10% 572	[[411] [15]		
No	下限深度	Ŷ	t	σν		σν		土質名	S							
1	(m)	(KN/	<u>m3)</u>	(KN/m2))	(KN/m2)		m 1								
	2.700	<u> </u>	8.00	120.6	20	48.60	<u>) 玛</u>	<u>里工</u>								
2	<u>0.000</u>	1	<u>0.00</u>	172 /	10	116 /0) 103) 744	<u>ッ味</u> 薬児 ド は ショ	、ト型	市政						
4	14 400	1	6 31	260 4	17	150 47	/ 103 / 124	<u>* 庇しりンル</u> 心質シルト	-	1712						
5	15 700	1	7 00	282.5	57	159 57	1 2	<u>> 頁 > ル </u> ンルト質細砂	>							
6	27 800	1	4 00	451 9	97	207 97	1	<u>ンルト</u>								
No	斗笛观庙		庙				Ť	<i>a</i> u'	г	50	FC	ID	DC	动动动动	建立い値	P
NU	п <i>开/</i> 木皮 (m)	(T	唱 司)	/ / L (kN/m?	3)	(kN/m?)		(kN/m2)	L (1	mm)	(%)	16	(%)	^{10 味 吧 盈} 補正	T用工NILL	N
1	1 310		3 75	18	00	23	58	23 58		uniti /	(11)		1.07			
2	2 300		5.00	18	00	41	40	41 40								
3	3. 300	:	34.00	20	00	60	60	60 60								
4	4.300		<u>44. 0</u> 0	20.	00	80.60		<u>71.</u> 60								
5	5.300		27.00	20.	00	100	60	81.60								
6	6.300		26.00	20.	20.00 120.		60	91.60								
7	7.300		20.00	19.	00	140.	10	101.10			12.10			1. 000	26. 111	0.516
8	8.300	19.	<u>19.00</u> <u>159.1</u>		10	110. 10			12.10			1.000	26. 232	0.527		
9	9.325 1.71 10.320 1.76			16.	31	177.	70	118.45			68.30					
10	10.320	<u>20 1.76</u> 30 1.67			<u>16.31</u> <u>193.9</u>		93	124. 73			68.30					
11	11.330		1.67	16.	3. 31 210. 40			131.10			68.30					
12	12.340		1.58	16.	5. 31 226. 88 13			137.48			68.30					
13	13.300		0.00	16.	31	242.	53	143.53			68.30					
14	14.725		1.71	17.	00	266.	00	152.75			42.70					
16	16 210		1.58	1/.	00	2/6.	45	162.01			42.70					
17	17 205		0.00	14.	00	291.	04	165.00								
18	18 315		<u>0.00</u> 2.72	14.	00	310	18	170 02								
19	19 305		1.94	14	00	333	04	173 99								
20	<u>2</u> 0.310		2.81	14.	00	347.	11	178.01								
No	外力区	数	海北	化係数		rev	ц Н	低減区	数							
	L	~		FL		, -,	(m	n) B	~							
1																
2																
3																
4					_											
5					-											
6					+											
7	0	. 123		4.207	+			1.0	00							
8	0	. 126		4. 188	+			1.0	00							
<u>y</u>					+				-							
10					+				\neg							
12					+				\neg							
13					+				\neg							
14					\uparrow											
15					\uparrow											
16									\neg							
17																
18																
19																
20																
		水	平加速	速度(gal))	150	. 00	0								
		液	状化排	旨数		PL= 0	. 00	0								
		最	大水平	P変位(cr	m)	Dcy =	0.0	0								

	適	用式		建築	建築基礎構造設計指針式 (2001)											
	調査	件名			地質調査											
	調査	住所		東京	都台東区東	〔浅草										
	調査	位置					=									
	ボーリ	ング名		No. 1												
	孔口樹	<u>票高(m)</u>		KBM+	0.12											
	地下7	K位(m)		GL-3	. 40											
	低洞	(係数		0.01	5											
	マグニ	チュー	×	7.50	0											
	<u>計算対</u>	象範囲		地下	<u>水位以深て</u> 	<u>* FC</u>	<u>≦35%</u> FC	<u>>35%かつ</u>	(粘土分)	含有率≦	10%また	<u>:ltIP≦15)</u>				
No	下限深度 (m)	γt (kN/m	3) (σv kN/m2)	σν' (kN/m2)		土質:	名								
1	2.700	18.	.00	48.60	48.60	埋土	<u>.</u>									
2	0.800	10	00	172 /0	116.40	砂饼	* \$/	山下陸中功								
3	14 400	19.	31	260 47	150.40	<u>叶</u> 木瓜 孙 啠	<u>こしタンハ</u> たいしト	レド貝中沙								
5	15 700	17	00	282 57	159 57	シル	<u>_ / / / </u> / ト 質 細 程	1;								
6	27 800	14	00	451 97	207.97	シル	/ <u>, , , , , , , , , , , , , , , , , , , </u>	·								
	1.600		±		,	1	ar vi	DEO	50	ID	DO	ていて然まれ身い	建式时度	р		
NO	計昇深度 /m\			γτ (kN/m2)			∪ V (N/m2)	000		14		「砂味地盛」	11曲上N1	ĸ		
1	1 210		2 75	10 01	(KIN/ III Z)	30	<u>ν(Ν/ΙΙΙΖ)</u> 23 Ε0	(00)	(70)		(70)	11日上1余刻				
2	2 300	5	5.00	18.00	$\frac{1}{23.3}$	10	<u>41</u> 40									
<u>۲</u>	3 300	24		20.00		30	60 60		1							
4	4 300	<u></u>		20.00	2 80	50	71 60									
5	5 300	27	1 00	20.00	100	30	81 60									
6	6 300	26	<u>. 00</u>	20.00) 120	30	91 60		1			1				
7	7.300	20). 00	19.00) 140	0	101.10		12.10			1.000	26. 111	0.516		
8	8.300	21	. 00	19.00) 159	0	110.10		12.10			1.000	26. 232	0. 527		
9	9, 325	1	. 71	16.3	1 177.	70	118.45		68.30							
10	10.320	1	. 76	16.3	1 193.9	93	124.73		68.30							
11	10.320 1.76 11.330 1.67			16.3	1 210	10	<u>131_</u> 10		68.30							
12	12.340	330 1.67 340 1.58			226.8	38	137.48		68.30							
13	13.300	C	0. 00	16.3	1 242.5	53	143.53		68.30							
14	14.725	1	. 71	17.00	266.0)0	152. 75		42.70							
15	15.340	1	. 58	17.00	276.4	15	157.05		42.70							
16	16.310	0	0.00	14.00	291.	1	162.01									
17	17.305	<u> </u>	0. 00	14.00	305.0)4	165.99		-							
18	18.315	2	2. 73	14.00	319.	8	170.03									
19	19.305	1	. 94	14.00	333.0)4	173.99									
20	20.310	2	2. 81	14.00) 347.	1	178.01									
No	外力係	数	液状化	係数	γ cy	Η	低減係	《数								
	L		FL			(m)	β									
1							_	_								
2								_								
3							_	_								
4							-	_								
5		—					_	_								
6	-	101		0.455			· · ·									
7	0	. 164		3.155			1.0	000								
8	0	. 168		3. 141			1.0	00								
9																
10																
10				\rightarrow			-									
12							-									
11							+									
14				-+												
10								-								
10																
1.2								-								
10							1									
20																
		水斗	「加速」	 隻(gal)	200	000										
		液物	大化指数	数	PL= 0	000										
		最ノ	<u>大水</u> 平3	<u>変位(c</u> m)	Dcy =	0.00										

	適用	用式		建乳	建築基礎構造設計指針式 (2001)											
	調査	件名			地質調査											
	調査	住所		東京	東京都台東区東浅草											
	調査	位置					1.5	=								
	ボーリ	ング名	1	No.	1											
	孔口桐	<u>票高(m)</u>		KBM	+0.12											
	地下力	k位(m)		GL-	3.40											
	低減	(係数		0.0	15											
	マグニ	チュー	ド	7.5	00											
	計算対	 象範囲		地丁	水位以淀	采で	、FC≦	35% FC	<u>>35%カ</u>	こう ()	粘土分割	含有率≦	10%また	(はIP≦15)		
No	下限深度	γt	:	σv	σν			土質	名							
	(m)	(kN/m	13)	(kN/m2)	(kN/m	2)										
1	2. 700	18	. 00	48.60	48	. 60	埋土									
2	6.800	20	. 00	130.60	96	. 60	砂礫									
3	9.000	19	. 00	172.40	116	. 40	礫混し	こりシル	~ト質中	□砂						
4	14.400	16	. 31	260.47	150	. 47	砂質シ	ルト								
5	15.700	17	. 00	282.57	159	. 57	シルト	「質細砂	b							
6	27.800 14.00 451.97 207.97 シルト															
No	計質涩度	NL	 	v+		v		v'	DEO	<u> </u>	FC	IP	Pr	₩ 和 和 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	補正N値	P
10	п <i>开</i> 床反 (m)	נאו הו)		ן נ (kN/m?)	(LN)	י m2\	(LN	/m2)	(mm)	ς Ι	(%)	11	(%)	ばない	гняць і і ШШ	N
1	1 210		3 75	10 (<u>וווב)</u> יז הי		<u>/ 111∠)</u> 23 ⊑0		<u> </u>	1/0/		1/10/	17日11111111111111111111111111111111111		
	1.310 2.200		5 00	10.0		1 4		11 10		-						
2	2 200	;	1 00	10.0 20 /		0 6		60 60								
د ۸	3.300	3	4 00 1	20. l		0.0		71 60								
4 F	4.300 5.300	4	7 00	20.0	0 10	0.0		01 60								
с 2	0.300 6 200	2	6 00	20.0		0.0	n	01 60								
0	0.300	2		10 /	10 12	0.1	n 1	01 10			12 10			1 000	26 111	0.516
/ 0	2 200	2	1 00	10.0	14 10 15	0.1		10 10			12.10			1 000	20.111	0.010
0	0.300	<u> </u>	1 71	19.0	10 10	<u>יו כי</u> ר רי		18 /5			68 20			1.000	20.232	0. 527
9 10	10.320 1.76			10.0	16.31 177.70 16.31 193.93		2 1 2 1	24 72			68 20					
11	11 220		1 67	10.0	16 31 193 93 16 31 210 40			24. 13			68 20					
10	12 240		1 50	10.0	<u>31 210 40 13</u>			37 10			68 20					
12	13 200			16 3	21 24	2 F	2 1	13 52			68 20					
1/	11 705		1 71	10.3	0 24	6 0		40.00 52 75			12 70					
14	14. /20		<u>1./ </u> 1.Б0	17.0	<u>10 26</u>	0.0	<u>v I</u> 5 1	57 NE			42.70					
10	16 210		0 00	11.0	<u>, 21</u> 10 20	1 1	1 1	62 01		-+	4L. /U					
17	17 305			14.0	0 29	<u>ι.ι</u> 15 Λ	4 1	65 00								
18	18 315		2 72	1/1 (0 21	9 1	8 1	70 02		+			1	1		
10	19 305		1 9/	1/1 (0 33	3.0	4 1	73 00					1			
20	20.310		2 81	14.0	0 34	7 1		78 01					1	1		
 N	U	***		нт. (L / т. ч.			<u>. </u>	/rc: :== /=	**	L]
NO	∽Ւ刀1徐	蚁	液()()()	161杀剱	ү су		П (m)	1匹减1併	:蚁							
1	L	-+	ŀ	L		+	(11)		\neg							
		-+				+			\neg							
2		-+				+			\neg							
ۍ ۸						+			-							
4 F						+			\neg							
ن م									\neg							
0 7		206		1 000		+		1 0	00							
/	0	200		1 705		+		<u> </u>								
ð	0	. 294		ı. 795		+		<u> </u>								
9						+			_							
10	1	-+				+			\neg							
10		-+				+			\neg							
12						+			_							
13						+			-							
14									-							
15						+			\neg							
16						+										
17						+			_							
18						+			_							
19						-			_							
20			- • • •			<u> </u>			_							
	水平加速度(gal) 350.000															
		液	伏化指	í数	PL=	• 0.	000									
		最大	大水平	·変位(cm) Dcy =	: 0	. 00									

記録写真

ボーリング No.1

施工前

全景

標準貫入試験

残尺

ボーリング No.1

検尺

乱れの少ない試料採取

孔内水平載荷試験 試験装置

孔内水平載荷試驗 測定中

ボーリング No.1

施工後

KBM遠景

KBM近景

室内土質試験

圧密試験

三軸圧縮試験(UU)

室内土質試験

土粒子の密度試験

粒度試験(ふるい分析)